Chemical modification patterns of active and inactive as well as procapsid-bound and unbound DNA-packaging RNAof bacterial virus Phi29.
نویسندگان
چکیده
During replication, the lengthy genome of dsDNA viruses is translocated with remarkable velocity into the limited space within the preformed procapsid. We previously found that a viral-encoded RNA (pRNA) played a key role in bacterial virus phi29 DNA translocation. Design of mutant pRNA sets containing two and three inactive mutant pRNAs, respectively, led to the conclusion that the stoichiometry of pRNA in DNA packaging is the common multiple of 2 and 3. Together with studies using binomial distribution of mutant and wild-type pRNA, it has been confirmed that six pRNAs of phi29 form a hexagonal complex to drive the DNA translocating machine. These findings have brought about commonality between viral DNA packaging and other universal DNA/RNA-riding processes including DNA replication and RNA transcription. Chemical modification was used to compare the structures of active and inactive as well as free and procapsid-bound pRNA. Our results explain why certain pRNA mutants are inactive in DNA packaging while remaining competent in procapsid binding, since the mutations were located in a domain involved in DNA translocation that is dispensable for procapsid binding. A mutant pRNA that had reduced procapsid binding was revealed to have a structural alteration within the procapsid-binding region that may account for the binding deficiency. Chemical probing of procapsid-bound pRNA revealed a large area of protection, while a 3-base bulge, C(18)C(19)A(20), was accessible to chemicals. A pRNA with a deletion of this 3-base bulge was fully competent to form dimers, bind procapsids, and inhibit phi29 virion assembly in vitro; however, its activity in DNA packaging and virion assembly was completely lost. The results suggest that this bulge is not involved in procapsid binding but may interact with other DNA-packaging components. A computer model showing the location of the CCA bulge was presented.
منابع مشابه
Interaction of gp16 with pRNA and DNA for genome packaging by the motor of bacterial virus phi29.
One striking feature in the assembly of linear double-stranded (ds) DNA viruses is that their genome is translocated into a preformed protein coat via a motor involving two non-structural components with certain characteristics of ATPase. In bacterial virus phi29, these two components include the protein gp16 and a packaging RNA (pRNA). The structure and function of other phi29 motor components...
متن کاملProbing the structure of monomers and dimers of the bacterial virus phi29 hexamer RNA complex by chemical modification.
All dsDNA viruses multiply their genome and assemble a procapsid, a protein shell devoid of DNA. The genome is subsequently inserted into the procapsid. The bacterial virus phi29 DNA translocating motor contains a hexameric RNA complex composed of six pRNAs. Recently, we found that pRNA dimers are building blocks of pRNA hexamers. Here, we report the structural probing of pRNA monomers and dime...
متن کاملGrouping of ferritin and gold nanoparticles conjugated to pRNA of the phage phi29 DNA-packaging motor.
The bacteriophage phi29 DNA-packaging motor, which translocates and compresses the DNA genome of the phage into its procapsid during virion assembly, involves an essential ring formed by the packaging RNA (pRNA). We attached electron-dense nanoparticles to pRNA by hybridizing a DNA oligonucleotide with a biotin or thiol modification to a 3'-extension of core pRNA, and by coupling streptavidin a...
متن کاملA dimer as a building block in assembling RNA. A hexamer that gears bacterial virus phi29 DNA-translocating machinery.
Six RNA (pRNA) molecules form a hexamer, via hand-in-hand interaction, to gear bacterial virus phi29 DNA translocation machinery. Here we report the pathway and the conditions for the hexamer formation. Stable pRNA dimers and trimers were assembled in solution, isolated from native gels, and separated by sedimentation, providing a model system for the study of RNA dimers and trimers in a protei...
متن کاملMapping the inter-RNA interaction of bacterial virus phi29 packaging RNA by site-specific photoaffinity cross-linking.
During replication, the lengthy genome of double-stranded DNA viruses is translocated with remarkable velocity into a limited space within the procapsid. The question of how this fascinating task is accomplished has long been a puzzle. Our recent investigation suggests that phi29 DNA packaging is accomplished by a mechanism similar to the driving of a bolt with a hex nut and that six packaging ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Virology
دوره 281 2 شماره
صفحات -
تاریخ انتشار 2001